USN

Fifth Semester B.E. Degree Examination, June/July 2019 Management and Entrepreneurship

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define Management. Explain the roles of Manager. (08 Marks)
b. Whether Management is a Science, Arts or Profession? Justify your answer.

OR

2 a. What are the various steps involved in planning?
(08 Marks)
b. What is Decision making? Explain different types of decisions.
(08 Marks)

Module-2

3 a. Briefly explain the principles of Organization.
(08 Marks)
b. Explain briefly various steps involved in selection process.
(08 Marks)

OR

4 a. Explain importance of co-ordination and its techniques.
(08 Marks)
b. Define Controlling and explain the steps in a control process.
(08 Marks)

Module-3

$\begin{array}{ll}5 \text { a. Explain Business Ethics and Corporate Governance. } & \text { (} 08 \text { Marks) } \\ \text { b. Explain the characteristics of Entrepreneur. } & \text { (} 08 \text { Marks) }\end{array}$
OR
6 a. Explain the stages in entrepreneurial process. (08 Marks)
b. Explain the barriers involved in entrepreneurship. (08 Marks)

Module-4

7 a. Explain the objective of Small Scale Industry. (08 Marks)
b. Explain the impact of Globalization on Small Scale Industry. (08 Marks)

OR

8 a. Briefly explain the steps involved in starting Small Scale Industry. (08 Marks)
b. Describe the objective and function of TECSOK and KSSIDC. (08 Marks)

Module-5
9 a. Define Project and explain Project Identification.
(08 Marks)
b. Explain the contents of Project Report. (08 Marks)

10 a. Write a note on Project Appraisal.
(08 Marks)
b. Define and differentiate CPM and PERT.

15EE52

Fifth Semester B.E. Degree Examination, June/July 2019

Microcontroller

Time: 3 hrs.
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Missing data, if any, may be suitably assumed.

Module-1

1 a. With neat diagram, explaim the internal architecture off 8051 (10 Marks)
b. Compare micro processer with microcontroller.
(06 Marks)

OR

2 a. What is microcomtroller? List out the differences between CISC and RiSC. (06 marks)
b. Explain any five addressing modes of 8051 with examples for each.
(10 Marks)

Module-2

3 a. What do you understand by assembler directives? Explain the following assembler direatives : i) ORG ii) END iii) EQU.
(08 Marks)
b. Briafly explain the steps involued to assemble and rum an 8051 program.
(08 Marks)

4 a. Explain the following instructions with an example:
i) DIV AB
ii) SWAPA
iii) $\operatorname{RRC} A$
iv) $\mathrm{XCHD} \mathrm{A,@Rp}$.
(08 Marks)
b. Write an ALP to find the value of $P=N!/ R$! Using a subroutine which finds the value of factorial of a given number. The values of N and R are stored in locations 30 H and 31 H . Store P in 32 H .
(08 Marks)

Module-3

5 a. Explain the various data types in 8051C.
(08 Marks)
b. Assume that XTAL $=11.6592 \mathrm{MH}$. What value do we need to load into the timer's registers if we want to have a time delay of 5 ms ? Write an ALP for timer 0 to create a pulse width of 5 ms on P2.3.
(08 Marks)

OR

6 a. Write an 8021 C program to find the checksum byte of data stream $30 \mathrm{H}, 4 \mathrm{AH}, 65 \mathrm{H}$ and 10 H . Convert the binary value of checksum into decimal and display the value of the BCD digits on ports $\boldsymbol{P}_{0}, \mathrm{P}_{1}$ and P_{2}.
(10 Marks)
b. Assume that a $1-\mathrm{Hz}$ external clock is being fed into pin $\mathrm{T}_{0}(\mathrm{P} 3.4)$. Write a C program for counter 0 in mode 1 to count the pulses and display the THO and TLO registers on P2 and pl respectively.
(06 Marks)

Module-4

7 a. What is serial data communication? Explain the significance of SCON register in detail.
b. Write an \mathbb{A} LB to transfer letter "A" serially at 4800 baud continuously?
(06 marks)
c. Write the steps to transfer data serially.

OR

8 a. Explain the different interrupts of 8051 indicating their vector addresses.
(06 marks)
b. Write a C program that continuously gets a single bit of data from P1.7 and sends it to P1.0, while simultaneously creating a square wave of 200μ s period on pin P2.5. Use timer 0 to create the square wave. Assume that $\mathrm{XTA} \mathrm{\amalg}=11.0592 \mathrm{MHz}$.

Module-5

9 a. Write an ALP to rotate the steppar motor 5 steps in clockwise direction and 10 steps in anticlockwise direction with a delay between each step.
(10 Marks)
b. Explain with a diagram, the interfacing of DAC 0808 to 8051 chip.

OR

10 a. Interface an LCD display to 8051 and write an 8051 C program to send letters 'M', 'D', and ' L ' to the LCD using delays.
b. With a block schematic explain the features off 8255 PI chip.

15EE553

Fifth Semester B.E. Degree Examination, June/July 2019 Electrical Estimation and Costing

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define Estimating and State its purpose. State the important facts, which an estimator should know for preparing an Internal wiring estimate.
(08 Marks)
b. Write note on the Comparative Statement.
(08 Marks)

OR

2 a. Explain IE77 and IE76.
(08 Marks)
b. State the rules to be observed while Inviting tenders.
(08 Marks)

Module-2

3 a. What is the function of a fuse? Why it is connected in the phase wire?
(04 Marks)
b. Draw the electrical circuit and estimate the quantity of materials and their cost required for PVC casing - capping used in a house, the plan of whiah is shown in fig.Q3(b). Assume the height of ceiling as 3.6 metres and one plug point is tQ be provided in each room. (12 Marks)

OR
4 a. Write the general rulas to be consider for wiring system.
(04 Marks)
b. Draw the elect ric oircuit and estimate the Quantity of material and total cost for PVC wiring system used in a hall of $15 \mathrm{~m} \times 6 \mathrm{~m} \times 4.5 \mathrm{~m}$ height, the hall is to be fitted with fan points and light points make your own assumptions for the number of fan and light points and other missing datas.
(12 Marks)

Module-3

5 a. What are the important considerations regarding motor installation wiring? (06 Marks)
b. Prepare a list of matenial and estimate the cost for providing service connection to a single storey building at $240 \mathrm{~W}, 1 \phi, 50 \mathrm{~Hz}$ having a light and fan load of 5 kW . The supply is to be given from an overhead line 20 m away from the building.
(10 Marks)

6 a. What do you understand by service line? Write down the various methods of Installing service lines.
(06 Marks)
b. A $10 \mathrm{Hp}, 415 \mathrm{~V}, 3 \phi, 50 \mathrm{~Hz}$ Induction motor is to be installed in a workshop, the plan of which is shown below in fig. Q6(b). Show the layout of the wiring and estimate the quantity of material required and give in approximate cost the wiring is to be surface conduct.
(10 Marks)

Fig.Q6(b)

Module-4

7 a. Give the points te be considered at the time of erection of overhead lines.
(06 Marks)
b. An overhead $11 \mathrm{KV}, 50 \mathrm{~Hz}$ line has to be erected using $27 \mathrm{~kg}, 10$ meter long steel poles and copper wire of size no. $3 / 2.642 \mathrm{~mm}$, with average span of 150 meters. Make a list of material required and estimate the cost per kilameter.
(10 Marks)

OR

8 a. Explain the procedure of earthing of Transmission lines.
(08 Marks)
b. Estimate the Quantity of material required and cost of 1 km of overkead $11 \mathrm{KV}, 50 \mathrm{~Hz}$ line using steel poles of 11 meter height and ACSR conductor of $\frac{6}{1} \times 2.59 \mathrm{~mm}$ with an average span of 120 m .
(08 Marks)

Module-5

9 a. Describe briefly the equipment that must be available in a substation.
(08 Marks)
b. Prepare a list of material required and work out the cost of installation of a 400 KVA indoor type $11 / 0.433 \mathrm{KV} \mathrm{X}^{「}$ (transformer).
(08 Marks)

OR

10 A $37 . \mathrm{KW}$ connection is ta be given to an agriculture field at $415 \mathrm{~V}, 3 \phi, 50 \mathrm{~Hz}$, the connection is to be given from a $3 \phi, 11 \mathrm{kV}$, overhead distribution line which is available at a distance of 40 m . The motor has a full load efficiency of 85% and power factor 0.8 . Make a neat sketch showing How will you arrange the supply and estimate quantity of material required with cost.
(16 Marks)

Fifth Semester B.E. Degree Examination, June/July 2019
 Signals and Systems

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Explain the classification of signals.
(05 Marks)
b. For the continuous-time signal $x(t)$ shown in Fig.Q1(a) obtain $y(t)=x(3 t)+x(3 t+2) .(05$ Marks)

Fig.Q1(a)

c. Find odd and even components for the signals given :
i) $x(t)=\left(1+t^{3}\right) \cos ^{10}(t)$
ii) $x(t)=1+t+3 t^{2}+5 t^{3}+9 t^{4}$.
(06 Marks)

OR

2 a. Explain the properties of systems.
(05 Marks)
b. Determine whether the continuous-time signal, $y(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)$ is periodic ; where $y_{1}(t), y_{2}(t)$ and $y_{3}(t)$ have periods of $1.08,3.6$ and 2.025 seconds respectively. (05 Marks)
c. For the following continuous-time systems, determine whether the system is i) linear
ii) time invariant
iii) memoryless.

1) $y(t)=x(\sin t)$
2) $y(t)=(t+10) x(t)$.
(06 Marks)
Module-2
3 a. Derive the equation for convolution sum.
(06 Marks)
b. The impulse response of an LTI system is given by
$h(n)=1 ; n= \pm 1$

$$
\begin{aligned}
& =2 ; n=0 \\
& =0 ; \text { otherwise }
\end{aligned}
$$

Determine the output for an input sequence $x(n)=[2,3,-2]$.
(05 Marks)
c. Find the forced response for the system given in Fig.Q3(c). With input $x(t)=2 e^{-t} u(t)$.
(05 Marks)

OR
4 a. Prove the commutative property for convolution sum.
(06 Marks)
b. Find the response of the system described by the difference equation $y(n)-\frac{1}{9} y(n-2)=x(n-1)$ with $y(-1)=1, y(-2)=0$, and $x(n)=u(n)$.
(05 Marks)
c. Draw the block diagram corresponding to the LTI system described by difference equation given by $y[n]+\frac{1}{2} y[n-1]-\frac{1}{3} y[n-3]=x[n]+2 x[n-2]$.
(05 Marks)

Module-3

5 a. State any six properties of the continuous time Fourier transform.
(06 Marks)
b. Find the frequency response of a continuous time LTI system represented by the impulse response $h(t)=e^{-|t|}$.
(05 Marks)
c. Find the frequency response and the impulse response of the system described the differential equation $\frac{d y(t)}{d t}+8 y(t)=x(t)$.
(05 Marks)

OR
6 a. If $x(t) \stackrel{F T}{\longleftrightarrow} x(j \omega)$ then prove that $\left.y(t)=e^{j \beta t} x(t) \stackrel{F T}{\longleftrightarrow} y(j \omega)=x(j \omega-\beta)\right)$.
(06 Marks)
b. Evaluate the Fourier transform for the signal, $x(t)=e^{-3 t} u(t-1)$. Find the expression for magnitude and phase spectra.
(05 Marks)
c. Find the frequency response and the impulse response of the system described by the differential equation : $\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=\frac{-d x(t)}{d t}$.
(05 Marks)

Module-4

7 a. State and prove time-shift property fo the discrete-time Fourier transform (DTFT). (06 Marks)
b. Find the DTFT of the signal $x(n)=\alpha^{n} u(n) ;|\alpha|<1$. Draw the magnitude spectrum.
(05 Marks)
c. Obtain the frequency response and the impuise response of the system described by the difference equation given by $y(n)+\frac{1}{2} y(n-1)=x(n)-2 x(n-1)$.
(05 Marks)

OR
8 a. State and prove Parseval's theorem.
b. Find the DTFT of $\delta(n)$ and draw the spectrum.
(06 Marks)
c. Obtain the difference equation for the system having impulse response.

$$
\mathrm{h}(\mathrm{n})=\delta(\mathrm{n})+2\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+\left(-\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})
$$

(05 Marks)

Module-5

9 a. Define RoC and explain its properties.
(06 Marks)
b. Find the z-transform of $x(n)=\alpha^{n} u(n)$ and draw its RoC.
(05 Marks)
c. Find the discrete -time sequence $x(n)$ which has z-transform, $x(z)=\frac{-1+5 z^{-1}}{\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)}$ with

$$
\operatorname{RoC} ;|\mathrm{z}|>1 .
$$

(05 Marks)
OR
10 a. State and explain final value theorem.
b. Find $x(z)$ if $x(n)=-\alpha^{n} u(-n-1)$ and find the RoC.
(06 Marks)
c. Obtain the time domain single corresponding to the z -transform given below :

$$
x(z)=\frac{\frac{1}{4} z^{-1}}{\left(1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}\right)} ;|z|>\frac{1}{2}
$$

(05 Marks)

